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The Balance Equations represent rotating> stratified fluid motions and therefore are of 
potential utility in studies of geophysical phenomena. In this paper we present nurnerica! 
algorithms for this model. The most novel aspect resolves the implicit structure of the time- 
derivative terms in the Balance Equations with iterative, predictor-corrector methods which 
combine time-stepping and iteration. The discrete spatial operations are low-order, finite-dif- 
ferences which exactly conserve certain integral properties of the model. The numerical perfor- 
mance of the model is evaluated, and comparisons with other geophysical models are 
made-the more highly approximated Quasigeostrophic Equations (QG) and the more fun- 
damental Primitive Equations (PE). We find that the Balance Equations are an excellent 
Intermediate Model: their computational cost is closer to that of the less expensive QG. but 
they quite accurately represent the evolution of the vorticity held of the more accurate PE. 
even when fluid advection rates are comparable to the Coriolis frequency (i.e., the Rossby 
number is order one) and a substantial gravity wave component is generated in the PE. In 
addition, the existence of a solvability barrier at large Rossby number is demonstrated. As an 
illustration of a physical phenomenon for which the Balance Equations are well suited, 
solutions are examined for the slow viscous decay of broad-band, large-scale> barochnic initial 
conditions at tinite Rossby number (i.e., balanced turbulence). Several departures from the 
more familiar geostrophic turbulence are found: the enstrophy cascade is stronger, the 
baroclinic energy conversion is stronger, and there is a tendency to form isolated frontal struc- 
tures in the vorticity field. '.c' 19X6 Academic press, inc. 

1. INTRODUCTION 

Large-scale fluid motions in the oceans and atmosphere are significantiy mfluen- 
ted by the earth’s rotation. This regime is characterized by small or moderate 
Rossby number, 

Here V is a characteristic horizontal velocity scale, f a Coriolis frequency, and II. a 
horizontal length. The Quasigeostrophic Equations (QG) are derived as the 
leading-order asymptotic expansion in R of the more fundamental fluid equations, 
and during the past three decades Quasigeostrophy has been found to be a 
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qualitatively (and sometimes quantitatively) useful model. Not only does it yield 
apt analogs to observed large-scale phenomena, but it also excludes other 
phenomena, such as inertia-gravity waves, which are additional solutions to the 
most common of the more fundamental models (i.e., the Primitive Equations (PE); 
see the Appendix), but which also appear to be nearly extraneous for large-scale 
flows. The presence of these extraneous components to model solutions imposes 
burdens both of interpretation (greater complexity) and of computation (faster 
physical time scales, shorter than l/A which must be resolved). 

The term Intermediate Models denotes the general class of models which are 
more accurate than Quasigeostrophy at linite, but not large, R, yet also exclude the 
extraneous phenomena of the Primitive Equations. A review of this class is presen- 
ted in [13], and a comparison of their solutions for a wave-triad evolution is made 
in [4]. In general? however, too few numerical realizations of Intermediate Models 
have been made, hence few are yet available to adequately assess their relative 
accuracy and utility. 

One of the most attractive of the Intermediate Models is the Balance Equations 
(BE) in the form first proposed by Lorenz in [ 111. In addition to superior accuracy 
in the wave-triad solution comparison, its virtues include (1) second-order accuracy 
in small RI; (2) conservation, in the absence of dissipation, of volume integrals of 
energy and all powers of the potential temperature (or potential density if the fluid 
has a multi-component equation of state, as in seawater); and (3) the minimum 
number of terms retained in the truncation of the PE consistent with these proper- 
ties. Several variants of the BE have been formulated, with different degrees of 
accuracy in the spatial variation of the Coriolis frequency and different independent 
vertical coordinates, physical height (pressure in a compressible fluid), or potential 
temperature. More information on the history and formal properties of the BE is 
given in [5-71. 

In this paper, we describe the design and computational performance of a 
numerical model of a particular variant of the BE (designated BBE in [5]) in order 
to be able to explore its value as an Intermediate Model of large-scale geophysical 
phenomena. This particular choice is made for its compatibility between the 
geophysically important gradient of Coriolis frequency and horizontally periodic 
boundary conditions (the latter are simpler to implement than solid boundary con- 
ditions). 

Intermediate Models in general, and the Balance Equations in particular, have a 
mathematical structure which requires novel computational algorithms (i.e., a par- 
tial differential equation system with implicitly defined time derivativesj. The 
algorithms which we report are relatively simple ones, yet their performance 
appears to be satisfactory in accuracy and efficiency for the regime with moderate R 
values. 

Since the model is too complex for rigorous and complete theoretical analysis, we 
demonstrate the numerical performance of the BE with an initial-value problem for 

’ The Balance Equations are also formally valid for strongly stratitied flow even if R is large [ 121. 
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a random realization of a broad-band spectrum of vorticity~ At finite I? the 
solutions, which we call balanced turbulence, exhibit substantial departures from 
geostrophic turbulence (R = 0). Both the numerics and physics are also examined in 
relation to the QG and PE models. Analogous studies of physical behavior for the 
evolution of balanced isolated vortices, rather than balanced turbulence9 are presen- 
ted in companion papers [14, 151. 

The order of the paper is as foIlows: the BE are defined in Section 2, numeric& 
methods are given in Section 3, the initial-value problem is posed in Section 4, 
numerical performance is evaluated in Section 5, and physical behavior is analyzed 
in Section 4. 

2. BALANCE EQUATIONS 

We shall consider a non-dimensional form of the BE with horizontal velocities 
scaled by v, horizontal coordinates by L, vertical coordinate 2 by H, and time 
coordinate t by LiV. Other quantities are scaled compatibly [ 141. There are several 
mathematically equivalent alternatives in the formulation of the model [53. We 
have chosen one in which the primary dependent variables of the model are the 
streamfunction, $; the cumulative divergence potential, X; the deviation in potentiai 
temperature about a horizontal average, 6; and the horizontally averaged static 
stabihty profile, S(Z, f). The corresponding governing equations are (5b(9) below. 
,9 is proportional to the vertical derivative of the horizontally averaged potential 
temperature, 

where B is the Burger number, equal to (NH/fL)‘, with N a characteristic 
Brunt-Vaisala frequency. (9 is scaled relative to &I such that the total potential tem- 
perature is BR-‘@ + 8. $ and X are related to east and north horizontal velocities 
b 

the geopotential field 4 is calculated from hydrostatic balance, 

and the vertical velocity i$l is calculated from mass contmuity, 

Here x and y are east and north coordinates, coordinate subscripts denote partial 
derivatives, and A is the horizontal Laplacian operator. The primary equations of 
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the model are, respectively, the vorticity, thermal balance, omega, and stability 
equations [ 51: 

Atit = -J($, AI,+) - j?ex + w= + RV . (A$VX: - wVt,bz) + D, (61 

LI~I = &z + =ft$.x, $vL, (7) 

wzz + SAW= J($, A$)= + /h,bxz - AJ(t,b, /3) + RV. (wVtjz - AIJVX~)~ 

- 2RJb+L &L + WV. W’&) - @4zj - R, @J 

Sr = -R’Q3w& (9) 

where J is the horizontal Jacobian operator: V is the horizontal gradient operator, 
fi is the non-dimensional Coriohs gradient (resealed by IT/L’), and (.) denotes a 
horizontal average. D is the curl of the horizontal vector representing momentum 
sources or dissipation (resealed by V2/,!,‘); e.g., the Newtonian dissipation form for 
D would be 

where v is the non-dimensional viscosity, and a common alternative, which we use 
here, is 

D = -vAAA$, (111 

with v referred to as hyperviscosity. The model is assumed to be adiabatic. More 
general forms for D and diabatic heating could easily be incorporated, but this will 
not be done here. The dimensionless parameters p and R are assumed to be small 
since terms of order /?R and R’ are neglected in deriving this model. All of the 
preceding fields except S and @ have zero horizontal average in a periodic domain. 

Lateral boundary conditions are periodicity in x and y over a distance I+‘. The 
vertical boundary condition,is no normal flow; for plane boundaries this implies 

w=.x=o at r=O, 1. (12) 

In addition, Q is conserved under horizontal advection on the vertical boundaries. A 
simpler form of this condition is that these boundaries are isothermal. If this is true 
initially, it will remain so by the more general condition; thus, we shall adopt 

6=0 at z=O, 1. (13) 

An appropriate initial condition is the specilication of $(x, JJ, Z, 0) and S(z, 0). 
This is sufhcient to allow the time integration of the model schematically as follows: 
first, 0 is calculated from (7); next $! and X (or W) are calculated from the coupled 
equations (5), (6), and (8); finally, St is calculated from (9). Using $l and SZ the 
solution can be advanced in time, after which the cycle can be repeated.’ The key 

‘This is Method 1 discussed in [5]. 
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difficulty in integrating the BE, which is unusual in geophysical fluid computations, 
is the implicit definition of the time-derivative terms in the middle step above: no 
explicit expressions can be written for them without involving other quantities 
which themselves are unknown until the time derivatives are known. Thus, coupled, 
non-linear equations must be solved simultaneously, in general by iterative techm- 
ques (see Section 3.A). 

FinaIly, we record the integral conservation laws for the models They provide 
important constraints upon the choice of the aigorithms. allow tests of the 
correctness of the model construction (augmenting known analytic solution tests j* 
and provide useful measures of its computational accuracy. The mtegral quantities 
are the kinetic and potential energies and moments of the potential temperature 
field: 

dz(BR-‘@+&JJ”). (16) 

for any positive integer tz. The corresponding conservation laws are 

Kr=jdz(Ow)- [dz($D), (i7j 

3. NUMERICAL MODELS 

Several general considerations have guided the development of our numerical 
model of the BE, (5))(9). First, and most important, the implicit time-derivative 
structure of the BE system requires the use of iterative methods in its numerical 
solution. However, for a system as complicated as the BE? we have no a priori 
knowledge of the convergence properties of any such methods. We therefore con- 
sidered several combined time-stepping and iteration methods (which we shah refer 
to simply as time methods), in hopes that at least one would prove successful. 
Freliminary testing on idealized ODE systems provided the basis for narrowing our 
choice of time methods to two, both of which were implemented and tested in the 
BE. 
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Second, geophysical fluid motions frequently are spatially complex. Their 
numerical calculation often requires high spatial resolution, which puts a premium 
on computer storage for in-core calculations. In particular, on a Cray-1 computer, 
only low-order time methods are practical, since they require the retention of very 
few time levels of information. 

Third, experience with geophysical computations suggests that it is advantageous 
to choose spatial discretizations which conserve certain integral properties of the 
continuous equations (in the limit of vanishing time step). For the BE we selected 
methods which conserve K+ P and hf’H’ (for n= 1 and 2) when D=O (see 
( 17))( 19)). These are the same integrals Lorenz’s scheme [ 111 conserves, and con- 
sequently our vertical discretization formulae are similar to his (see Section 3.B). 

To illustrate the time methods, we symbolically represent the BE as 

where the 2’s are easily invertible, spatial, linear differential operators, and the 0j “‘s 
are non-invertible, spatial, non-linear differential operators. In forming (20)-(21), ~1 
has been replaced by pi X from (5 j, and 0 has been replaced by a non-linear 
functional of $ from (7). Equation (9) becomes 

which is evaluated after (2Ok(21) have been solved. 
The remainder of this section is split into two parts: in the lirst we discuss the 

two time methods implemented in the BE model, and in the second we discuss the 
spatially discrete forms of the operators 2 and X. 

We further simplify the notation of the model system (2Ok(21) by replacing 
9~~~4,; by 9 and 9~ iO,t,; by 3: 

ti[ = FC$, m 

TV= %ti? x ti,). 

A general time method algorithm for (23k(24) is 

Given $.‘, $r, and XX at trip i, tnp2 ,...; 
1. PREDICT $‘( tn) and Y’( tm) 
2. EVALUATE @( &) = @-($‘( t,J, la( tJ) 
3. ITERATE N times to obtain converged values of t+bdv(tn), t,by(tn), 

and XN(t,z) using Algorithm Ml or M2 (defined below). (251 

The superscripts 0 and N represent the starting and Iinal values of the iterates. We 
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choose to fix IV rather than perform costly iteration convergence testing at each 
time step; the success of this approach is shown in Section 5. Model times are 

tn=to+nAt, n=l ’ , U,..~, \26\ 

where t0 is the initial time and At is the time-step size. We defer the discussion of 
(25) for the start-up times until after our discussion of the specific time methods 
and M2. 

Although any of several methods could be used to predict $’ and p in (25.i), 
computer-storage considerations led us to choose second-order methods. For f>fY 
11 > 2, we use 

and 

~O(t,~)=~(t,,-~)+24t~~(~,~~-~)~ !28) 

We propose two methods to be used in (25.3). jn the first algorithm, Ml, the 
value of + remains fixed throughout an iteration cycle and then is corrected outside 
this cycle using the resultant $[> thereby partly separating the iterative solution for 
the implicit time derivative from the time-stepping process. ln the second algorithm- 
M27 $ is updated as soon as a new iterate for $( is available, thus combining 
iteration and time-stepping.3 

z41gorithz M 1 

3. REPEAT for J = 1, 2 ,..., L: 
1. REPEAT for \I= 1, 2 ,..., N(A): 

1. EVALUATE Y + <!J($‘~ ‘, 
2. EVALUATE I,& + .Y ($ ~~ ?; 

l. $;-I) 
>- i h 7, 

2. CORRECT $’ + Y($yi’, $iJ. $t(r,*-TJ ,..., $4l**-*h...) 
3. REPLACE F’ +- X”“; I,//; +- I/I;(~). (29! 

h’gorithm M2 

3. REPEAT for 1~ = l? 2,..., N: 
1. ~VALUATE-~t~(~~-‘,~-~~~~~‘) 
2. CORRECT I/$’ + =@Y$;--17 djAr,2- ,A $dt,, -21 . . . . , &la- lb.-l 
3. EVALUATE $I+ Y($‘, X”). (30) 

Within the iteration cycles in Algorithms Ml and M2, all old iterates are 
overwritten (stored in the same location) by new iterates as soon as they become 
available; we write “u overwrites b” as b + a. 2 is a linear algebraic time-stepping 
operator. Although an appropriate method of any order in 4t might be used in the 

A A variant of M’Z, where steps (30.3.1) and (30.3.3) were interchanged, was also implememed and 
tested. In all but a very few cases. performance of the variant m,as inferior to that of ML 
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correction steps (29.3.2) and (30.3.2), we have chosen the following second-order 
method: 

where $* (ln) is the current estimate as designated in (29) or (30). The integers L, 
N(J), and N regulate the iteration cycles and their appropriate values may be 
solution-dependent. Sensitivity to the choice of these parameters and comparison of 
Ml and M2 solutions are examined in Section 5. Because we are unable to state 
appropriate functional properties of 9 and 3, such as Lipschitz conditions, we 
have no a priori assurances of convergence of the iterations in Ml or M2, but 
several a posteriori demonstrations. 

Algorithm (25) must be modilied for the start-up times &,, t,,..., tr, where r is one 
less than the order of the predictor in (25.1). For compatibility with (27)-(28) 
r = 1. At to, the initial value problem is defined by specifying $, and X(to) and 
$Jto) are obtained as follows: 

1. SETp=O, $:=O 
2. REPEAT for v = 1, 2 ,..., NO: 

1. ir4-2qlj, A!-‘, I)-‘) 
2. *; + P(l), Y). (32) 

Note that $ remains fixed throughout the iteration cycle. Because (32.1) contains 
poor starting values compared to (27)(28), we have sometimes found it necessary 
to choose N0 $ N in order to obtain well-converged solutions. 

At t,, we replace (27)(28) by 

and otherwise apply (25). 
Finally, we have found that modification of the iterations in Ml and M2 to 

include relaxation improves their convergence properties under some circumstances 
(e.g., when R is large; see Section 5). This is accomplished by adding the step 

Y+lXJ?pl+(l-tX)X, 

with a similar expression for $; after the $Z evaluation in (29) or (30). 

(34) 

The algorithms Ml and M2 are extensions of familiar predictor-corrector 
schemes to implicit time-derivative systems. In the simpler case of explicit systems, 
they reduce to p(ec)’ and pe(ce)‘v, respectively. Here p denotes PREDICT a new 
field, e denotes EVALUATE a new time derivative, and c denotes CORRECT the 
new held. Integer exponents indicate repetition of the operation sequence in 
parentheses. We use these reduced forms of Ml and M2 to integrate the explicit 
QG and PE models. 
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ES. Spatial Discwtization 

We select discrete forms of the spatial differential operators in (5))( 11) with the 
following properties: they are finite-difference with quadratic errors in the horizon- 
tal grid spacing and linear errors in the vertica14; they can be manipulated through 
discrete operations so that discrete forms of the conservation laws (1’?‘)(19), with 
H = 1 and 2, hold exactly except for time-method errors; and they have a relatively 
narrow reach across adjacent grid points. These properties do not uniquely deter- 
mine the discrete forms, but they do strongly constrain them. 

The horizontal grid is uniform with spacing 4.~ The vertical grid is staggered and 
non-uniform (Fig. 1). We partition the vertical domain 0 <Z < 1, into NT intervak 
{4iri, i= l....- NIj. We define two sets of grid coordinates 1::. i=O,..~, Nz) md 
{ri, i= 15.... NIj, as follows: 

The dependent variables (3, X, K’, and S are defined on {z,+ 1, and $, $,? and 69 are 
defined on 1~~~ 1. Vertical boundary conditions (12 ))( 13 ) become 

d=X=\i*=O at z = z$, z:.. (36) 

This grid is similar to that of Lozenz [ll], except that we have partitioned the 

A It is common practice in rotating fluid computations to use iess resolution and accuracy in xxtical 
operations than in horizontal ones. Note that the errors in our vertical operators improve to quadratic 
when the vertical grid is uniform. 
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potential temperature into average and deviation components and located them on 
different grids. The criterion for locating a variable on a particular grid is to achieve 
the desired narrow reach. 

The vertical derivatives in (5)-( 11) can be constructed from two primary 
operators, differencing and averaging: 

Operators with a superscript asterisk yield a product at level ~7, and ones without 
an asterisk yield a product at level z~. With appropriate combinations of (37) the 
governing equations can be written so as to require variables only on their defining 
grids. Equations (5j and (lOk( 11) conform to this since only fields on the same 
vertical grid level are involved; (5) is evaluated at {z?} and (lo)-( 11) at {z~). The 
remaining equations, (6)-(9), conform in a non-trivial way when written as follows: 

A~~= -~(~, A~j-~~.~+ ~[~~]+RV.(A~~[V~] 

- A[lvv*[vlj]]) + D, (38) 

A0 = P’*[A$l + 2Rv*LJ(k, $.,.)I, w 

P’*[v[w]]+SAw= ~*[J($,A$)+~~,y]-AJ(A*[$],O) 

+RV. (v*[A[wP’*[V$]] - A$ P’[VX]]) 

-2Rf’*[J($.y, ~~)~]+~A(V.(e~‘*[~[V~]l) 

- v*[A[o]&4[w]])- v*[D], 
(40) 

ST = -R2( P’*[ ~~~[tl\v]] ). (41 J 

Equation (38) is evaluated at {zj}, and (39)-(41) at {z?, i= l,..., N=- 11. 
For the horizontal operators in (38)-(41), we choose the following discrete forms. 

A is represented as a live-point cross, 

&I+ tax+ L,n + qm- ~,n + qwz+ 1 + qw- i - ‘h,J/P’~~2~ (42) 

where IZ and n are horizontal grid indices and + denotes the discrete delmition of 
the left-hand-side quantity. The horizontal derivative in the terms with coefficient /I 
is 

The form V. (uVb) is evaluated from the identity 

V. (aVb) = +(Aab - bAa + aAb), (44) 
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with A from (42). The Jacobian operator is evaluated by the formula of Arakawa 
[l] in all cases except where its arguments are $.Y and Gj ; in the latter cases, it is 
evaluated from the identity 

with application of (42) and (44). 
Finally, the conservation laws (17)-( 19) can be derived from the above with the 

following discrete forms: 

<.) is an average over r~ and ?I, and 

The quantity ($D ) can be shown to be positive definite from (42) and ( 10 1 
or (11). 

4. POSING A NUMERICAL INITIAL-VALUE PROBLEM 

We select a particular initial-value problem in order to illustrate the numerical 
and physical behavior of the BE. It is the turbulent evolution and slow viscous 
decay of a band-limited white vorticity spectrum. The initial spectrum is centered 
about the baroclinic deformation radius (delined below). We choose a low-order 
truncation in the vertical, NZ = 2. The gradient of the Coriohs frequency is taken to 
be only moderately small, viz., fl= 0.5 Thus, the illustrative problem is generic, 
with most physical parameters of order unity (Y is an exception) and general initial 
conditions 

The vertical domain is partitioned unequally in imitation of the shallow depth of 
a typical oceanic pycnocline: we choose AhI = 516 and Ah2 = l/6. Also, for the 
Burger number B = 1, @ i(l= 0) = 1.0, and @>(r = 0) = 8~2, the eigensolutions of the 
vertical structure equation, 
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are 

(49) 

Subscripts refer to zi level and parenthetical superscripts to mode index. Mode 1 is 
called barotropic or external, and mode 2 is called lirst barochnic or internal. The 
deformation radius is 1~ ‘. 

The initial vorticity held is evaluated from 

x {ajk, cos 27r[(/?~- + fyj/W+ (-;kl] + bjkl cos 27c[(h - fy)/W+ qjk,] }, (50) 

where the random variables (0, b) are from a normal distribution and (& q) are 
from a uniform distribution over a unit interval. The constant 7 is used to enforce 
the normalization condition 

K’ has the value 47~; hence the range of horizontal scales in (50) is between 0.5 and 
2.0 in each coordinate. Of course, solutions vary with the particular realization for 
the random numbers. We shall show results from only a single realization, but we 
have checked that our conclusions are qualitatively valid over many realizations. 

All solutions in Sections 5 and 6 have the same initial vorticity held (50) and the 
same @JOj. Initial values for other dependent variables are calculated as described 
in Sections 2 and 3 and the Appendix. The parameters specilied above are lixed, 
while others will vary among solutions (in particular, the principal physical 
parameter R). The model integration time, T= 10, exceeds the times of strongest 
adjustment in spectrum shape, turbulent cascade rate, and energy dissipation rate 
(see Section 6). 

For a given As, the time step At is chosen small enough for accuracy and com- 
putational stability, and the hyperviscosity v is chosen just large enough for stability 
(see Section 5). For the study of numerical behavior, many different solutions are 
calculated and a larger As = W/l00 is used for economy. Accompanying values arc 
v = 2.5 x lO-5 and At < l/12. We lix R at an intermediate value of 0.25. In the study 
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of physical behavior, however, we are most interested in a few solutions with the 
highest available resolution for different R values and models. Accordingly? we 
choose a smaller A.s = W!l44. v = 1.2 x 10p6, and At < l/24. 

5. NIJMERICAL PROPERTIES 

In this section we evaluate the time methods Ml and M2, compare the BE model 
with the PE and QG models, and explore a BE solvability barrier for large values 
of R. All method evaluations and model intercomparisons are based on the size of a 
global error as a function of the cost of calculating the solution. 

Several measures of numerical error are conceivable. Differences between ZJ 
analytic solution of the continuous equations and a numerical solution would 
provide an absolute measure. However, no such solutions are known for the 
physical regime of interest. An alternative standard might be a particularly well 
resolved numerical solution. but we are unable to achieve a resolution greatly better 
than the minimum required for a physically credible solution. A disadvantage with 
any absolute standard in a regime of turbulence is the difficulty in distinguishing 
between cumulative numerical error and the effects of rapid divergence betwee 
solutions with initially small differences. 

We therefore choose a relative measure of error rate based on a discretized form 
of the appropriate kinetic energy tendency equation, (17) or (A7). We make a cen- 
tered, second-order finite-difference approximation to the time derivative, evaluate 
all other terms at the middle time, then difference the two quantities to obtain the 
residual, &( f ). We sample c at appropriately frequent fixed times over a period which 
includes the development of peak vorticity amplitudes in order to form a global 
error measure 

E= ; f &2(rm) 
L 

I:2 
. 

,?I = I 1 (52) 

For our particular realization, choices of A4 and t,,, which give sufficient resolution 
are hI= 10 and tHl = m/2, nz = 1, 2,..., M. Note that the choice of fixed sampling 
times restricts the time step to the set of all At’s of the form 1/(2j), for integerj. 

We define the cost C of a solution in Gray-1 CPU seconds measured from the 
first to last time step (for t e (0, l,k,]; initialization costs are not included). All timing 
tests were run on a fully loaded, multiprogramming machine (i.e., a single, shared 
CPU), and hence measured costs are somewhat variable; however, costs for all 
repeated cases were within OS”A of their original cost. 

Note that on all cost-error figures presented in this section, the highest-cost cases 
represent an arbitrarily chosen small value of At, and the lowest-cost cases 
represent the largest value of At such that the solution is stable (see below)~ The 
largest-At solutions almost always have sufficientiy small E values SQ that the 
important physical behavior is represented correctly. Both the energy imbaiance 
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estimator & and our time methods are of second-order accuracy in small At (large 
C), and all numerical parameter sets tested have been carried to this asymptotic 
limit. 

Our time methods are subject to various computational instabilities for 
inappropriate choices of numerical parameters. An important restriction, analogous 
to the familiar C.F.L. condition, is that At must be small enough to resolve the 
physical rates of advection, diffusion, and wave propagation (Rossby waves for all 
models with /I # 0 and gravity waves for the PE model). This restriction determines 
the largest At values on the cost-error curves below. Another important restriction 
is that non-linear computational instability be prevented. This instability results 
from the accumulation of excess variance on small spatial scales in the solution, no 
matter how small At [8]. Commonly this is prevented either by conserving 
quadratic integral invariants, as is possible in the QG [lo], or by choosing v large 
enough to limit the small-scale variance. The latter can be accomplished with 
physically small values of v in the PE, non-conserving QG, and the BE at small and 
moderate R values. However, for large R the v required to eliminate the BE model 
solvability barrier is so large as to grossly distort the physical character of the 
problem (see Section 5.C). 

A numerical solution is rejected if it fails to meet any one of three acceptance 
criteria. In practice, these criteria are most often violated because of a com- 
putational instability. First, the global error must be small; solutions with E > Emax 
are rejected (for our realization, we choose Emax = 10e4). Second, local errors must 
be bounded; we test for s > smaX every 3 At? with ~~~~ > Emax. Third, we monitor the 
&norm of X at every time step and reject a solution if 

The appropriate value of B* is highly solution-dependent, but it can be chosen to 
be much larger than a representative value of iiXill for given initial conditions, yet 
still be a fairly sensitive indicator of instability. Other fields could be monitored in 
addition to or instead of X; however, this seems to be unnecessary, since once 
unstable growth occurs in one held? all other fields tend to follow. In most instan- 
ces, solutions fail by the second and third criteria within a few time steps of each 
other. 

A. Time-Method Evaluation 

Here we document the numerical behavior of time methods Ml and M2, deter- 
mine optimal parameters for each, and select one for later use in the model com- 
parisons and physical studies. The exploration of numerical behavior occurs under 
conditions of moderate numerical difficulty: an intermediate R value (0.25) and 
stable At values. 

Numerical parameters unique to Ml are L, the number of iteration-correction 
cycles, and N(d), the number of (X, tir) iterations for each A = 1, 2,..., L (see (29)). 
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Ftc. 2. Cost-error curves for time-method Ml with N(A) = I and L zs labeled. Dashed lines connect 
solutions with common AL 

For each value of L = 1, 2, 3, 4 and several At? we considered ail possible com- 
binations of N(1) such that 

where 

L=l 

L=2 

L = 3, 4. 

We found that for a lixed value of L > 1 and AL, each additional iteration cycle (i 

mcreases by one) increases the cost by 30 % of the minimum-iteration case (i = 0) 
while the resulting errors vary surprisingly little-less than 8 %, often no more than 
2%-from minimum-iteration errors (which are not always the iargest errors )~ 
Further, for a given value of L, the size of the largest-allowable time step does not 
increase for i > 0~ Hence, for L > 1, we determine N(I) = 1 is optimal’ 

optimal M 1 cost-error curves for L = 2, 3,4 and several At are shown in Fig. 2. 
Dashed lines connect cost-error points for fixed values of At and three values of L 
and illustrate that? except for the largest-At cases, an increase in L results in an 

’ The L = 1 cases behave peculiarly. One is the only value of L for which i > !I results in accuracy 
improvement: i = I accuracy is much greater than that for ; = 0. although a further increase in i results m 
no further error reduction. For small Al, i = 0 solutions are ill-behaved in that errors begin to increase as 
AZ decreases, but O((Af)‘) error improvement is restored with the application of relaxation. No L = 1 
cases are shown in Fig. 2, because they are all less accurate for a tixed cost and more expenskve mr a 
fIxed accuracy than L > 1 cases (i.e., the L. = 1 curve is above and to the right of the L = 4 curve). 
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FIG. 3. Cost-error curves for time-method M2 with N as labeled. Dashed lines connect solutions 
with common AI. 

increased cost with little or no gain in accuracy. Thus, the error appears to be time- 
step-controlled, not iteration-controlled. Because costs increase with increased L 
and accuracy does not increase significantly, if at all, we conclude L = 2, N( I ) = 
N(2) = 1 is the optimal choice of Ml numerical parameters. 

In method M2, N controls the number of iteration-correction cycles. We selected 
N= 1, 2, 3, 4, 6, 10 and many At; the resulting constant-N curves are shown in 
Fig. 3. For a lixed value of At, errors decrease substantially, by nearly a factor of 
10, as N is increased from one (not shown6) to two, but errors are nearly 
unchanged as N increases from two to ten (dashed lines on Fig. 3). For At’s near 
their largest-allowable values, we actually see a slight unexplained increase in error 
as N is increased from two to three, but this behavior does not occur for smaller 
values of At. The cost for each additional iteration-correction cycle is 65% of the 
one-cycle cost (with little or no error improvement for N> 2); hence, for M2, N= 2 
is optimal for any value of At. This conclusion also holds under the numerically dif- 
licult situation of R values near the large-R solvability barrier (see Section 5.C). 

Figure 4 is a comparison of optimal Ml and M2 cost-error curves. M2 errors are 
somewhat smaller than Ml errors for large At values, but the curves are nearly 
indistinguishable for small Af’s. We believe that the coincidence of the curves for 
small At may not be a universal result; relative positions of the curves in the small- 
At regime may depend on a particular realization or global error measure. 
However, the slight superiority of M2 over Ml in the larger-At regime has been 
consistently observed; it occurred in our earlier time-method testing on ODE 
systems and the companion studies of isolated vortices. 

’ Ill-behaved solutions similar to those in the Ml, ,5 = 1, N( I) = 1 case also occur for sma&,4/ values 
in the M2, N= 1 case; relaxation restores O((dr)‘) error improvement with decreasing AI, but does not 
make the sohttions competitive with N> 1 solutions. The similarity in Ml and M2 method behavior is 
not surprising in these cases, because the methods are quite similar for these minimum-iteration 
parameters. 
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FIG. 4. Optimal Ml and M2 solutions (L = -, 7 I\‘(j.) = 1 and !V = 2, respectively ). 

B. Adode Intercomparisons 

The QG and PE systems may be solved by the time methods pi and peicejatg 
described in Section 3.A.’ A simple, familiar method is the .-leapfrog” scheme, which 
is the lirst member (IV= 0) of the latter class of methods. Note that p, e, and c have 
slightly different meanings in the QG and PE models (see Appendix): p, e, and c 
each apply to X, $, and 0 in the PE model; p and c refer to $ only and e implies 
evaluate both I,/I~ and X in the QG model. 

Once computations were begun, it became obvious that only small values of L 
and N needed to be considered: we limit our discussion to N = 0, 1, 2 and L = I? 2. 

0th the &)G and PE models perform poorly in the pe mode; QG solutions alI faii 
by condition (53) before completion for all At values tested, while all leapfrog PE 
solutions have unacceptably large global errors (both are manifestations of splitting 
instability [lo]). A correction step added at each time step (i.e., p(ec)’ j prevents 
failure in the QG model and improves the PE global error to an acceptable level 
with only a negligible (-c 1%) additional cost. Hence, we see no need to consider 
the ad hoc leapfrog method with an occasional correction step. 

Figure 5 clearly shows the superiority of the p(ec)’ scheme for the PE model. 
Although p(ec)’ requires the smallest At value of any- of the successful schem.es, we 
presume p(ec)’ outperforms pe(ce)’ because the accuracy gained by z final 
evaluation cannot offset its great cost. 

The minimum cost of a PE solution is much greater than the BE minimum cost, 
partly because the largest successful PE time step is so much smaller than that of 
th’z BE. This greatly reduced time step is required to resolve gravity wave 

‘In some appiications, use of so-called ‘&semi-implicit” time methods is advocated for the PE [!?I. 
These have the property of allowing larger df. hence possibly smaller C, by numerically dampmg the 
high-frequency solution components. Since this is an akeration of the physical problem being calcdiakd. 
biasing both the numerical and physical model intercomparisons, we do not consider such methods here. 
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FIG. 5. PE solutions with time methods as labeled. 

propagation in the PE model. The gravity wave frequencies are proportional to 
Rplk for large k, where k is the horizontal wavenumber [ 141; this is an order of 
magnitude larger than the advective rates for R = 0.25 and the k values excited here 
(see Fig. 18). For larger R values, the ratio of costs for the BE and PE models 
increases but remains well below one for all cases examined. 

Figure 6 shows that the choice of the optimal QG method is much less clear than 
for the PE: p(ec)2 is the best method in the low-cost regime, but the p(ec)’ accuracy 
improves more rapidly with decreasing At in the intermediate-cost regime than does 
p(ec)*, so that p(ec)’ is the best method in the high-cost regime. Indeed, accuracy 
for both p(ec)’ and pe(ce)’ improves faster than 0((~It)~) over a very large range of 
At values; only at very small At values (C > 500) do these accuracy improvement 
rates slow and approach the expected asymptotic limit. 

The relative performance of the three models is summarized in Fig. 7. The QG 
scheme is p(ec)2, the BE is M2 (more complicated than, but derived from, a pe(ce)* 

IO-~ E 

FIG. 6. QG solutions with time methods as labeled. 
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FIG. 7. Modei intercomparison based upon optimal time methods (see text), A dashed line 
KC-~ x (Al)? is drawn for reference. Least costs for each model are marked on the abscissa with 
arrows. 

scheme), and the PE is p(ec)‘. (For comparably small At values, the optimal 
scheme for both the QG and PE is p(ec)‘.) Note that all three models closely 
parallel the dashed O((Ar)2) curve in their small-Ar limits. As noted above, aI1 E 
values on this ligure are acceptably small by criteria of physical analysis (see Sec- 
tion 6); hence, in practice there is no need to improve upon the minimum-cost 
solutions. .4rrows point to the minimum cost for each model; roughly: the ratio of 

PE : BE costs is 4 : 1 and BE : QG is 2 : l.* These ratios show that the BE model is 
much closer to the QG than the PE in cost. 

C. Sohability Barrier-for Large R 

Intermediate Models in general, and the BE in particular, are subject to 
solvability barriers [5]. In general no explicit specification of the barrier location is 
known for the BE, except in certain simple situations such as a steady, circular vor- 
tex {fl= v = 0 [ 131) and the Lorenz Triad Equations [3]. We find we are unable to 
obtain valid numerical solutions of the BE at sufficiently large values of R3 both for 
the present initial-value problem as well as for isolated vortex solutions [14]. We 
presume this occurs quite generally, although it has only been demonstrated for 
these two solution classes. Thus far, the inaccessible R values have been found to be 
moderately large, large enough to permit a study of BE solutions for Rossby num- 
bers ranging from zero to order unity. The numerical solvability barrier occurs at 
different values of R in different types of initial-value problems. .4 numerical 
solvability failure, of course, is not necessarily indicative of a solvability barrier for 
the continuous equations; it might rather only be a failure of a particular numerical 

’ This cost comparison is more appropriate than one for a tixed error level (which yields a cost ratio 
of about 3 : 1 for both BE : QG and PE : QG)> since in practice only the F’E wdct lx wed in the large 

C regime where this comparison is possible. 
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technique. Nevertheless, the numerical solvability barrier is interesting for the 
possibility of its representing the continuous barrier. 

TO locate the barrier we have made use of several alternative definitions of 
solution failure: (1) inability to achieve convergence in the initial iteration step for 
N0 arbitrarily large in (32); (2) excessive energy imbalance, with c,,,~~ chosen at a 
level of several percent of Kf; and (3) the occurrence of (53), with B* chosen at a 
level of several times the value of llX(l= O)ljZ. We designate the Rossby number at 
which solution failure occurs as I?*(Z). Defmition (1) is independent of 4t, and, for 
definiteness, we set v = 0. Definitions (2) and (3) depend upon these parameters as 
well as the particular threshold values; we test for them with 11 sufficiently large and 
4t sufticientfy small SO as to distinguish a solvability barrier in R from non-linear 
computational instability due to insufficient viscosity. 

In practice we have found that all three definitions give quite similar barrier 
locations: (2) and (3) always occur quite close together in time, and, near where (1) 
occurs, (2) and (3) occur at very early t. In part this coincidence is because the 
solvability is insensitive to the particular values of 4t, 4.5 V, time method, and L or 
N (but not No), as long as they conform to the conditions for satisfactory solutions 
in typical circumstances (see Section 5.Aj.9 Similarly the values for smaX and B* are 
not very important since solution failure takes the form of explosive computational 
instability. We have not explored the sensitivity to N=, lacking sufficient computer 
memory to do so while keeping 4s small enough to resolve the turbulent cascade. 

The only numerical parameter we have found to be important near the barrier is 
CI in (34). Away from the barrier, relaxation is usually neither needed nor advan- 
tageous; for example, in solutions with R=O.25 and small 4t, the least error for a 
given computational cost occurs at u = 0, i.e., no relaxation. However, the barrier 
can be displaced in R or t by increasing u up to a limit of 1. This is illustrated in 
Fig. 8a for definition (1) above: R*(O) is monotonically increasing with cx 
throughout the range plotted. As a approaches 1 from below, N0 must be taken 
increasingly large to determine R* satisfactorily; we have only plotted points which 
are well determined for N,, < 1000. 

R.+(t) decreases with time, as shown in Fig. 8b. The rate of decrease of R*(t) is 
rapid at early times (on the order of a characteristic advection time) but later 
diminishes to zero at a finite value of R*( IX) 2 1.1. Thus solutions with R =c R.J co) 
can be integrated without limit in time. R*(t) increases with 2, as in Fig. Sa; 
however, its range of variation with cx is greatly reduced as t increases. 

We can offer only a partial interpretation of this solvability barrier. It is based 
upon the facts that, for a given $ or c field, the concomitant BE IV held has an 
increasing amount of small-scale variance as R increases, and the evolving c field 
has an increasingly frontal character and larger small-scale variance at a given t as 
R increases (see Section 6). It is even possible that the mode of solvability failure for 

’ A specitic illustration of the insensitivity of the barrier location to v is the following: for R = I.5 a 
1000% increase in v delays the time of failure in Fig. Sb by less than 10%. 
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FIG. 8. Solvability barriers: (aj R*(l=O, I) and tbj I?*![) for fised values of the numerica! 
parameters (in particular, a = 0.75 and jr = 0.006Z5 ). 

the continuous BE is the occurrence of a spatial smgularity at finite R, although 
this cannot be demonstrated in discrete computations. The R dependence of 11. % 
shown at r = 0 in Fig. 9; the rate of increase of small-scale vlariance in w is quite 
rapid with R3 and to an increasing degree with wavenumber. 

Since excessive variance at small scales is a cause of non-lmear computational 
instability, model failure by definitions (2) and (3 ) is consistent with the preceding 
interpretation7 although we have not attempted to quantify -‘excessive” here. 
Lacking a paradigm of iteration non-convergence, we cannot directly assess the role 
of excessive sm&scale content in definition (1). However, by our present 
procedure we are unable to test for (2) and (3) at any R greater than failure by ( I)? 
and conversely success by (1) most probably imphes success by (2) and (3’) for at 
least some time interval after f = 0. Thus. the close correspondence among barrier 
locations determined by (2) and (3 j at small t and (1) at ? = 0 is at least not incon- 
sistent with failure due to excessive small-scale content. 

FIG. 9. Azimuthally averaged wavenumber spectra of IV(.Y, J, 0) for different R values. The arrow 
marks the highest wavenumber for which the spectrum of l(x, J, Oj from (50) is non-trivial. 
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The decrease of R* with t also is consistent with this interpretation: from the 
relatively large-scale initial conditions (50) a turbulent cascade transfers c to 
smaller scales, which also implies an increased small-scale content in IV with time 
for fixed R. This enhancement by cascade increases for several characteristic advec- 
tive times, after which the R*(t) curve approaches a horizontal asymptote (see 
Fig. 8b). 

We are, of course, uncertain how close the numerical solvability barrier might be 
to a barrier for the continuous BE. We can make the hypothesis that the faihue of 
the BE in crossing the barrier will be associated in the PE with the enhanced 
excitation of gravity waves, which are excluded from the BE. Evidence is presented 
in Section 6 that the PE gravity wave component grows rapidly with larger R and t, 
even where the companion BE solution lies within its solvability domain. Near the 
barrier itself (e.g., R = 1.5, t = I.&see Fig. gb), PE solutions exhibit a rapidly 
increasing gravity wave component with t, but present no particular difficulties in 
integrations across it. Thus, at least this aspect of PE solution behavior may exhibit 
a parametrically or temporally broad, rather than abrupt, transition across a BE 
solvability barrier. 

6. PHYSICAL PROPERTIES 

The problem posed in Section 4 lies in the regime of barochnic, geostrophic tur- 
bulence when R=O, which in turn has some properties in common with two- 

t =o 

FIG. IO. cz(x, y j for R = 0 at 2 = 0 and 5. The contour interval is 2.5, In all contour plots, the con- 
tours straddle zero, positive contours are solid. and negative contours are dashed. 
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FIG. 11. Upper-level vorticity variance for several R values. Solid curves are from the BE or QG 
models and the dashed curve is from the PE. 

dimensional turbulence [2, 17-191. These are regimes where the turbulent cascade 
has a tendency for energy to be transferred to larger spatial scales (m all three 
dimensions j and enstrophy (i.e.3 (c2)) to be transferred to smaller scales where it is 
dissipated~ For initial conditions with sufficient energy in the baroclinic mode on 
horizontal scales not small compared to l/A”‘, as in (50) a conversion of energy 
from potential to kinetic (i.e., (~0) > 0 in (17)-( 18 )) may be expected; this process 
is often referred to as baroclinic instability. Together the cascade and barochmc 
instability imply an increase in the energy in the barotropic mode on large scales. 

§ome of this behavior can be seen in Fig. 10. The upper level has the largest vor- 
ticity amplitude because F”’ has its peak there. Consequently it is the site of the 

FIG. 12. Maximum values for upper-level vorticity gradient variances and kurtosis for l E [& 101. 
Values at I = 0 (valid for all R) are indicated by the arrows on the respective ordinates. 
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most intense cascade. The vorticity field tends to develop elongated structures with 
time, while its peak amplitude changes very little. These cievelopmcmts have 

occurred to their maximum degree by the time t= 5 shown in Fig. 10. The 
elongation is the characteristic form by which enstrophy is transferred to small 
scales. As it occurs vorticity gradients increase in magnitude and both energy and 
enstrophy dissipation increase ((V<‘) is proportional to the kinetic energy dis- 
sipation rate in (17) with D defined by (11)). The other processes listed in the 
preceding paragraph are also occurring in this solution. 

We give the name balanced turbulence to the extension of geostrophic turbulence 
to finite R. In the present example several changes in behavior occur as R increases. 
One is the generation of more enstrophy, particularly at the npper level (see 
Fig. 11). The temporal peak has a larger magnitude and occurs later for larger R. 
These tendencies are found even more strongly in Vc (see Fig. 12). Even the QG 
solution shows an increase in variance by nearly a factor of ten over the initial 
value, and this is further increased by a factor of more than three in the BE solution 
with R = 0.5. Figure 12 also includes the kurtosis of the upper-level vorticity 
gradient and shows that spatial intermittency increases with R: it reaches a value 
nearly ten times the Gaussian value of three, Thus, the kinetic energy dissipation 
rate is larger and more intermittent in balanced turbulence than in geostrophic tur- 
bulence. The same is true for the enstrophy dissipation rate, (A[‘), yet again more 
strongly. Collectively these measures justify the conclusion that the cascade is 
stronger in balanced turbulence. lo 

The spatial patterns of vorticity are shown in Fig. 13 at a time near the enstrophy 
maximum. Together with Fig. 10, these illustrate the dependence upon R. The 
increasing amplitude, gradient, and intermittency are concentrated in narrow, 
elongated zones, which might be called vorticity fronts in analogy with 
meteorological fronts. 

Other fields exhibit different degrees of variation with R. In general, fields more 
indicative of the larger scales of motion have a lesser R dependence than does 
upper-level vorticity, with the reverse for fields more indicative of smaller scales. 
For example, streamfunction patterns are quite similar at the lower level and 
moderately so at the upper level, even after the longer evolution time of f = 10 
(Fig. 14). One can also see correlations between the upper and lower stream- 
function fields, which is indicative of a dominant barotropic component having 
evolved, at least for the larger horizontal scales. (From (50), the expected value for 
the initial correlation between the $i is zero. j There does not appear to be a strong 
R dependence in the degree of barotropic dominance. 

t” An artificially enhanced cascade can occur in the QG if the spatial discretization formulae do not 
conserve both energ.y and enstrophy (R. Salmon, personal communicationJ. It is therefore possible that 
the enchanced cascades seen in the BE and PE are due more to the non-conservative discrete formulae 
used than to the intrinsic non-conservation of enstrophy in their continuous forms. However, we used an 
alternate, non-conservative Jacobian operator in the QG and found that it does indeed lead to an 
enhanced cascade, but the degree of enhancement is much less than that in the BE and PE as R increases 
from zero. 
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FOG. 14. Leer- and upper-be1 streamfunction at l= 10 for R = 0 and 0.5. The contour interval 
is 0.6. 
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FIG. 15. Maximum values for the indicated source terms for kinetic energy and enstrophy for 
f E [O, lo]. 

The potential energy conversion rate in (17)-( 18) (I&), ascends to a peak at 
moderately early times (f = 2-3 j and thereafter descends to irregular oscillations 
about zero, Its peak magnitude is also an increasing function of R (see Fig. 15). The 
maximum rate of kinetic energy generation, over all R and r values calculated here, 
is about 30 times larger than the maximum energy dissipation rate discussed above. 
The analogous source term for enstrophy, ( - w A@), is also plotted in Fig. 15 and 
shows a slightly greater increase with R. However, in contrast to kinetic energy, 
there is more than a single inviscid source term for enstrophy ahhough the others 
are O(R) relative to ( -IV A$); this non-uniqueness makes its interpretation 
somewhat ambiguous for finite R. 

An important issue, of course, is how accurately the BE are representing the 
effects due to finite R. This we assess by comparison with PE solutions having iden- 
tical initial conditions and physical parameter values. For the BE solutions shown 
above, the correspondence with PE solutions is remarkably close for fields reflecting 
primarily the influence of the larger scales of motion. The same is true even for the 
upper-level vorticity field at R = 0.5. One measure of this, ([i), is shown in Fig. 11, 
where the two model values agree to within a few percent throughout the 
integration, even when the differences with QG values are quite large. A more 
detailed comparison is shown in Fig. 16. At t = 5 differences between the BE and 
PE can only be detected by very careful scrutiny, whereas by t = 10 differences are 
more easily detectable, although even then they are primarily deformations and 
small translations of identifiable structures. (Recall that turbulence has the property 
of limited predictability; i.e., small differences between solutions tend to grow 
exponentially in time even within the same model.) Streamfunction patterns for the 
PE are indistinguishable from those of the BE in Fig. 14. 

On the other hand, there is at least one major difference between the BE and PE: 
the PE have gravity wave solutions, while the BE do not. A useful indicator of 
gravity wave behavior is vertical velocity. Time sequences of 0~~) are shown in 
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FG. 16. <2(.~, .ti at R=OS from the BE and PE solutions: (a) I= 5 and (b\ l= 13, The costour 
interval is 75. 

Fig. 17. At the smaller R value, (1~‘) for the PE is only slightly iarger than that for 
the BE, indicating the presence of a weak gravity wave component whose 
amplitude appears bounded in time. For the larger R value, however, <x,’ j for the 
PE diverges systematically in time until it is more than an order of magnitude 
larger by f = 10. The gravity waves appear in the solutions in spatially localized 
bursts which subsequently propagate as fairly well-defined wave packets. With time 
more sites exhibit bursts, and the domain becomes filled with propagating waves. 
An illustration at an early time is shown in Fig. 18. The contour interval is chosen 
so that the corresponding BE plot would be empty, while the PE plot shows a first 
strong burst in the lower right corner of the domain. In spite of the discrepancy in 
the BE and PE IV fields, the energy conversion rate, (&I j, differs little in the t~vo 
solutions durmg the period of systematic kinetic energy generation. Also, the 
divergent kinetic energy in the PE (see (A8)), which is closely related to lt’. remains 
a very small fraction of the rotational kinetic energy (14), always less than 1% in 
the R = 0.5 solution. Even the divergent velocity variance in the PE. is only about 
1.5 times that of the BE, because the large-amplitude gravity waves are quite small 
in horizontal scale. 

Thus, while there are substantial differences between the BE and PE 11. fields 
when R is large enough, due to PE gravity wave bursts. there are quite close 
correspondences in the energy cycle and rotational flow field evolution. 

Finally- we remark that there are many alternative definitions of Rossby number. 
Given (5 1 ), our parameter R is equivalent to the ratio of initial r.m.s. vorticity and 
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FIG. 17. Vertical velocity variance for two R values and both the BE (solid linei and PE (dashed 
line) model solutions. 

FIG. 18. w(x, J,) at t = 3 and R = 0.5 in the PE solution. The contour inter\,al is 0.4. 
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Coriolis frequency. A measure based upon r.m.s. velocity and the length scale of its 
spectrum peak would be somewhat smaller. On the other hand, normalized vor- 
ticity measures using r.m.s. upper-level vorticity or the maximum vorticity would be 
larger, the former by at least 50% and the latter by a factor of ten or more at the 
time of greatest enstrophy. Thus, the R values we have considered here are not 
small by at least some measures. Furthermore, they are large enough to violate the 
sufficient condition for inertial instability derived for axisymmetric vortices by 
Ooyama [ 161, viz,, 1 + R( c 0 at some locations in the domain. Whether or not 
this condition is relevent in more general flow geometries, our solutions excise sym- 
metric inertial instability both by physical approximation (for the QG and BE) and 
by coarseness of vertical resolution (the condition is never violated in the PE at 
both levels in the same horizontal location). 

7. SUMMARY AND PROSPECTS 

In this paper numerical methods are presented for the solution of the Balance 
Equations. These methods while novel in detail, are relatively familiar in type: low- 
order finite-differences, predictor-corrector time integration iterative solution of 
implicitly defined time derivatives, and conservation of some integral properties of 
the continuous model. The numerical behavior of the model is satisfactory? both m 
accuracy and cost, in a physical regime of significant environmental rotation where 
the use of the Balance Equations is appropriate. 

The Balance Equations are shown to be an excellent Intermediate Model in this 
regime. They accurately represent the changes in solution behavior as R increases 
from zero (Quasigeostrophy) to values of order one, judged by the standard of the 
rotational velocity component, or vorticity, of the Primitive Equations. The 
Balance Equations do not include the gravity wave component of the Primitive 
Equations, which increases in strength with R but does not here become com- 
parable in energy to the rotational component. In this regime the Balance 
Equations are much less expensive to integrate than the Primitive Equations, 
although they are more expensive than Quasigeostrophy. The success of the 
Ealance Equations as an Intermediate Model for the phenomenon examined here 
(balanced turbulence) is also found for isolated vortices at intermediate R values 
[14, 151. 

However- with further increases with R (at fixed Burger number of I3 = 1). advec- 
tion rates surpass some of the gravity wave rates. gravity wave amplitudes greatly 
increase, computational expenses become more similar among the different models? 
and the accuracy of the Balance Equations can be expected to diminish, even m the 
point of encountering a numerical solvability barrier. (In our examples the Ba!ance 
Equations remain quite accurate, in the sense above, even for R and t vaiues quite 
close to the barrier. This barrier does not yet have a satisfactory physical inter- 
pretation.) Thus, in some regimes with large R the model advantage must shift to 
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the Primitive Equations. Here we have done little to explore this frontier to the 
regime of utility for the Balance Equations, except to document some occurrences 
of the numerical solvability barrier. In particular, we have not explored large values 
of B (strong stratilication), where the Balance Equations may be a good model 
even for large R [12]. 

Finally, the physical nature of balanced turbulence is illustrated in several 
solutions. As R increases from zero, the rates of enstrophy transfer to small scales, 
kinetic energy dissipation, and conversion of potential to kinetic energy all increase. 
Also, the vorticity held becomes more spatially intermittent, with increasingly 
isolated, horizontally anisotropic (frontal) zones of large amplitude and gradient. 
This physical regime is mostly unexplored, and our solutions are a lirst, albeit very 
incomplete, survey of its phenomena. Nevertheless, it is a very important regime, 
connecting the largest scales (dominated by rotation : geostrophic waves and tur- 
bulence) to the smallest ones (with negligible rotation : gravity waves and stratilied 
turbulence). The present results suggest that the Balance Equations may play an 
important role in its exploration. 

APPENDIX: QUASIGEOSTROPHY AND THE PRIMITIVE EQUATIONS 

The QG model equations are a subset of the BE, defined by (4b( 13) with R = 0. 
This system has the energy cycle (12)-( 18) for K defined by (14) and an alternative 
P, viz., 

.S and @ are invariant with time, but the A[(“‘, n > 1, are not conserved. In their 
place all integral powers of potential vorticity, c + (,Y’ti)= + py, are conserved 
when D = 0. Since the QG have an explicit time-derivative structure, the time 
methods are the reduced ones described at the end of Section 3.A. The primary 
dependent variable is I/J. We evaluate its derivative tj* from (6) with \V evaluated 
from (8) and @ = $:. All necessary spatial discretization formulae are given in Sec- 
tion 3.B. These imply that the discrete conservation laws for energy, Mi1’, and the 
first and second powers of potential vorticity are satisfied exactly apart from time- 
method errors. 

The PE model is not a subset of the BE; rather the opposite is true. The 
governing equations include (2)-(5); a vorticity equation which adds to (6) the 
term 
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on the right side; a thermal balance equation which adds to (7) the terms 

+R2(w~~zt+J(~. w&+2J(V$; vxz)z-J($I, \t$-Bj 
(A.3) 

-R3(~4(v~)-v-(wwx~~)j~ 

on the right side; a fluctuation heat equation, replacing (8), 

or= -~(~,~)-~)t.!-~(-v’(6vx=)+(e~~)=-(~t~)~)~ (Ad) 

and the stability equation (9). The new operator in (A3) is defined by 

J(VL~; V~)=+(~J(LZ, bj-J(40, ~)-J(Q, 4b)). (A5) 

The dissipation term B is analogous to D; e.g., with a hypervkkty as in ( 11 1, we 
have 

b = -v444xzz. (A6 1 

Boundary conditions are identical to those in the BE. Furthermore, in all 
calculations with the PE, initial conditions are identical to the corresponding EE 
solution at t = 0. 

The PE model delined in the preceding paragraph is a /I-plane approximation te 
the equations for general Coriolis frequency, as is the BE model in Section 2. This 
approximation allows formal consistency with the horizontaIiy periodic boundary 
conditions; otherwise the vorticity and divergence equations would have terms with 
non-periodic coefficients. The relative order of the neglected terms is Q( R/I ) in both. 
equations. 

The kinetic energy balance is somewhat expanded from ( 17) for PE. It takes the 
form 

where i is the divergent kinetic energy, 

Equations (18k(l9) also apply to the PE. 
The numerical methods for the PE use the reduced time-stepping algorithms 

applied to the explicit time derivatives tit, X[, and 0, in the vorticity, thermal 
balance, and heat equations, respectively. The spatial description formulae are the 
same as in Section 3.B for all terms in common with the BE; for the additional 
terms of the PE we choose second-order formulae which yield discrete conservation 
laws for energy and IV(‘) and Mf2). The spatial formulae for (A4) are such that zhe 
same contributions to (8) result when it is operated upon by the discrete 4 from 
(42 ). 

581/67,2-16 
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The specific formulae include the following: 

The operator 1% is an alternate average to that defined in (37). Its definition is 

and it yields a product at level zi. Korizontal operators here are the Arakawa 
Jacobian and (42), (44), (A5), and an extension of (47), viz., 

The energy equation (A7) holds with (46) and 
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